730 Philosophy 101, Sect 01 Logic, Reason and Persuasion

This course meets the following goal: Examine critically philosophical and other theoretical issues concerning the nature of reality, value, knowledge, human experience.

Instructor: Sidney Felder, e-mail: sfelder@rci.rutgers.edu
Rutgers The State University of New Jersey, Spring 2014, Tu & Th 1:10-2:30,

I. Elements of Set Theory (weeks 1, 2 and 3)
 Denumerable and Non-denumerable Infinite Sets; The Paradoxes and Axiomatic Set Theory
 Course Notes: Elements of Set Theory.

II. Linear and Partial Orderings (weeks 3 and 4)
 Linear Orderings; Partial Orderings.
 Upper Bounds and Lower Bounds; Least Upper and Greatest Lower Bounds.
 Course Notes: Linear and Partial Orderings.

III. Truth-Functional Propositional Logic (weeks 4, 5, and 6)
 Symbolism.
 The Logical Constants.
 Logical Implication and Equivalence. Consistency, Satisfiability, and Validity; Spaces of Assignments
 Course Notes: Truth Functional Propositional Logic. Schaum's pps. 44-68

IV. Quantification (weeks 6 and 7)
 ‘All’ and ‘There exists’ — The universal and existential quantifiers.
 Free and Bound variables; Open and Closed Formulae (Sentences).
 Interpretations and Models; Number.
 Logical Strength.
 Course Notes: Quantification Logic. Schaum's ch. 5; ch. 6 pps. 130-149; ch. 9 pps. 223-226

 Midterm

V. Fallacies (week 8)
 Arguments from Pervasiveness of Belief.
 Arguments from Absence of Information.
 Schaum's ch. 8
VI. Probability and Statistics (weeks 8-10)
 Elements of Axiomatic Probability.
 Conditional Probabilities, *a priori* vs. *a posteriori* probabilities; Bayes’ Theorem;
 probabilistic dependence.
 Evidence and Non-monotonicity.
 Sampling and Ascertainment Bias; Bertrand’s Box; the “Monty Hall” problem.
 Interpretations of Probability: Objective and Epistemic Theories.
 Generalizations and Laws; Counterfactuals.
 Statistical Mechanics and the Temporal Anisotropy of physical processes; The Problem of
 Induction.
 Schaum’s ch. 9 pps. 226-234; ch. 10

VII. Representation and Measurement in the Natural and Behavioral Sciences (weeks 10, 11, 12)
 Nominal, Ordinal, Interval, and Ratio Scales.
 Aristotelian, Newtonian, and Relativistic Space and Time.
 Euclidean and Non-Euclidean Geometries.
 Psychophysics; Utilities and Probabilities.

VIII. Decisions and Games (weeks 13 and 14)
 The Concept of a Strategy.
 Prisoner’s Dilemma and Prisoner’s Dilemma Repeated; Nash Equilibria.
 Iterated Dominance arguments and Common Knowledge.
 Probabilistic and Causal Dependence; Newcomb’s Problem.
 Course Notes: Problems of Mutual Expectation. Schaum’s ch. 9 pps. 234-251; ch. 10

The texts for this class are the following:

A series of short expositions I have written which I refer to as *Course Notes* in the Syllabus.

The *Schaum’s Outlines Logic* (Second Edition), by John Nolt, Dennis Rohatyn, and Achille
Varzi.

There will be a Midterm and a Final. Both will be open book (assigned and unassigned texts,
notes, and other inanimate sources all allowed). (Note that the place, date and time of the Final
Exam — which I will announce later in the term — may not correspond to that given in the Uni-
versity schedule).

A student’s grade will be determined by the grades on the Midterm and Final, and by the quality
of Class Participation. (Note that Class discussion provides an opportunity to demonstrate under-
standing of the material).

My class presents material that is conceptually and philosophically deeper than some students
enrolling in a “Critical Thinking” class may expect. My grading will take this into account.

Note: The university has directed that all syllabi make note of the existence of The Rutgers Self-
Reporting Absence Website (https://sims.rutgers.edu/ssra), as well as of the request that it be uti-
lized by students to indicate the date(s) and reason for their absence from class.